Excitation of Surface Waves Due to Thermocapillary Effects on a Stably Stratified Fluid Layer
نویسندگان
چکیده
In chemical engineering applications, the operation of condensers and evaporators can be made more efficient by exploiting the transport properties of interfacial waves excited on the interface between a hot vapor overlying a colder liquid. Linear theory for the onset of instabilities due to heating a thin layer from above is computed for the Marangoni–Bénard problem. Symbolic computation in the long wave asymptotic limit shows three stationary, non-growing modes. Intersection of two decaying branches occurs at a crossover long wavelength; two other modes co-exist at the crossover point—propagating modes on nascent, shorter wavelength branches. The dispersion relation is then mapped numerically by Newton continuation methods. A neutral stability method is used to map the space of critical stability for a physically meaningful range of capillary, Prandtl, and Galileo numbers. The existence of a cut-off wavenumber for the long wave instability was verified. It was found that the effect of applying a no-slip lower boundary condition was to render all long waves stationary. This has the implication that any propagating modes, if they exist, must occur at finite wavelengths. The computation of 8000 different parameter sets shows that the group velocity always lies within 2 to 3 of the longwave phase velocity.
منابع مشابه
Simulation of entrainment near a density stratified layer: Laboratory experiment and LIDAR observation
In this paper a simple qualitative model of the growth of a mixed layer adjacent to a uniform layer with a stably stratified layer is presented. The depth variations of mixed layer can be estimated from direct measurements. The Entrainment of a stably stratified layer into a turbulent mixed layer in a confined region was studied in laboratory for different Richardson numbers. The internal waves...
متن کاملRigidity and Irregularity Effect on Surface Wave Propagation in a Fluid Saturated Porous Layer
The propagation of surface waves in a fluid- saturated porous isotropic layer over a semi-infinite homogeneous elastic medium with an irregularity for free and rigid interfaces have been studied. The rectangular irregularity has been taken in the half-space. The dispersion equation for Love waves is derived by simple mathematical techniques followed by Fourier transformations. It can be seen t...
متن کاملIntrusive Gravity Currents and Internal Gravity Wave Generation in Stratified Fluid
The excitation of internal gravity waves by fluid intrusions that propagate along the interface between a uniform upper layer and a uniformly stratified lower layer is examined by way of laboratory experiments. Intrusions are generated using a simple lock-release apparatus. Experiments are conducted in which the density gradient of the uniformly stratified layer, the density jump across the int...
متن کاملWave propagation theory in offshore applications
A frequency-wavenumber-domain formulation is presented in this paper for calculation of the Green's functions and wave propagation modes in a stratified fluid body underlain by a layered viscoelastic soil medium. The Green's functions define the solid and fluid displacements and fluid pressures due to uniform disk loads acting in either the soil or fluid media. The solution is in the frequency ...
متن کاملLinear Oscillatory Cellular Thermocapillary Convection in Liquid Layers
A linear stability analysis is performed on a thermal, stratified liquid layer with a deformable thermocapillary surface. The objective is to investigate the possibility and conditions for existence of oscillatory cellular convection in the linear thermocapillary system. In general, the principle of the exchange of stabilities for the onset of cellular convection in liquid layers with deformabl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017